Widespread diseases caused by a fungus can have devastating effects on sorghum production. Diseses that affect sorghum occurs in numerous locations around the world and is especially prevalent in Niger and Senegal. Smallholder farmers in Africa often experience limited access to inputs and fungicide treatment options, leaving them especially vulnerable to these harsh diseases.
Marker-assisted selection for diseases that affect sorghum growth identifies and creates disease-resistant, locally adapted, sorghum cultivars. This allows breeders the advantage of marker-assisted selection to greatly speed the development of sorghum cultivars with resistance to new races of the pathogens. Local farmers unions, sorghum growers, and smallholder farms benefit from the ability to grow disease-resistant cultivars.
This project and research was funded by the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet, known as the Sorghum and Millet Innovation Lab (SMIL). This lab is funded by USAID and managed at Kansas State University.
Clint Magill Louis Prom
Adamou Haougui Coumba Fall
Mame Penda Sarr Diawara
USDA - Agricultural Research Service
Texas A&M University
Kansas State University
Niger - Institut National de la Recherche Agronomique du Niger (INRAN), Université de Tillabéri
Senegal - Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA)
Niger - Niamey
Senegal – Bambey, Thiès
Research collaboration between Texas A&M, INRAN, and ISRA has extended to include researchers at nearby Universities in Niger and Senegal will result in the identification or creation of disease-resistant, locally adapted, sorghum cultivars that maintain properties preferred by farmers and consumers alike. Target diseases are anthracnose and long smut in Niger and anthracnose and grain mold in Senegal. The cultivar creation aspect is derived from the ability to track resistance genes or quantitative trait loci (QTLs) with DNA-based tags that can be economically scored, in-country, through the development of allele-specific PCR primers at Texas A&M University.
Marker tagging uses Genome-Wide Association studies to identify Single Nucleotide Polymorphisms (SNPs) is derived from sources of genetic resistance identified in each country. F2 or later generation DNA samples from resistant and susceptible progeny of segregating crosses will identify markers associated with disease response. This technology enables breeders to take advantage of marker-assisted selection to greatly speed the development of cultivars with resistance to new races of the pathogens that are certain to occur over time. Publications in scientific journals inform other scientists interested in sorghum pathology and genomics while demonstrations and interactions with local farmers unions, including sorghum growers, showcase the value of growing disease-resistant cultivars.
Institut National de la Recherche Agronomique du Niger (INRAN)
Institut Sénégalais de Recherches Agricoles du Senegal (ISRA)